Geometrie

Formule de trigonometrie

Formule de formare pentru rezolvarea problemelor matematice. identitățile de bază trigonometrice, scăderea cu formula, adunare, scădere și multiplicarea, precum și alte formule. În plus, valorile funcțiilor trigonometrice pentru cele mai comune unghiuri sunt date.


Identități de bază

tanα=sinαcosα=1cotα\displaystyle{ \tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{1}{\cot\alpha} } cotα=cosαsinα=1tanα\displaystyle{ \cot\alpha = \frac{\cos\alpha}{\sin\alpha} = \frac{1}{\tan\alpha} } sin2α+cos2α=1\displaystyle{ \sin^2\alpha+\cos^2\alpha=1 } 1+tan2α=1cos2α\displaystyle{ 1 + \tan^2\alpha = \frac{1}{\cos^2\alpha} } 1+cot2α=1sin2α\displaystyle{ 1 + \cot^2\alpha = \frac{1}{\sin^2\alpha} } tanαcotα=1\displaystyle{ \tan\alpha \cdot \cot\alpha = 1 }

Formule cu două unghiuri

sin(2α)=2cosαsinα\displaystyle{ \sin(2\alpha) = 2\cdot \cos\alpha \cdot \sin\alpha } sin(2α)=2tanα1+tan2α=2cotα1+cot2α=2tanα+cotα\displaystyle{ \sin(2\alpha) = \frac{2\cdot \tan\alpha}{1+\tan^2\alpha} = \frac{2\cdot \cot\alpha}{1+\cot^2\alpha} = \frac{2}{\tan\alpha+\cot\alpha} } cos(2α)=cos2αsin2α=2cos2α1=12sin2α\displaystyle{ \cos(2\alpha) = \cos^2\alpha-\sin^2\alpha = 2\cdot \cos^2\alpha-1 = 1-2\cdot \sin^2\alpha } cos(2α)=1tan2α1+tan2α=cot2α1cot2α+1=cotαtanαcotα+tanα\displaystyle{ \cos(2\alpha) = \frac{1-\tan^2\alpha}{1+\tan^2\alpha} = \frac{\cot^2\alpha-1}{\cot^2\alpha+1}= \frac{\cot\alpha-\tan\alpha}{\cot\alpha+\tan\alpha} } tan(2α)=2tanα1tan2α=2cotαcot2α1=2cotαtanα\displaystyle{ \tan(2\alpha) = \frac{2\cdot \tan\alpha}{1-\tan^2\alpha} = \frac{2\cdot \cot\alpha}{\cot^2\alpha-1}= \frac{2}{\cot\alpha-\tan\alpha} } cot(2α)=cot2α12cotα=cotαtanα2\displaystyle{ \cot(2\alpha) = \frac{\cot^2\alpha-1}{2\cdot \cot\alpha} = \frac{\cot\alpha-\tan\alpha}{2} }

Formule cu trei unghiuri

sin(3α)=3sinα4sin3α\displaystyle{ \sin(3\alpha)=3\cdot \sin\alpha-4\cdot \sin^3\alpha } cos(3α)=4cos3α3cosα\displaystyle{ \cos(3\alpha)=4\cdot \cos^3\alpha-3\cdot \cos\alpha } tan(3α)=3tanαtan3α13tan2α\displaystyle{ \tan(3\alpha)= \frac{3\cdot \tan\alpha-\tan^3\alpha}{1-3\cdot \tan^2\alpha} } cot(3α)=cot3α3cotα3cot2α1\displaystyle{ \cot(3\alpha) = \frac{\cot^3\alpha-3\cdot \cot\alpha}{3\cdot \cot^2\alpha-1} }

Formule pentru reducerea gradului

sin2α=1cos(2α)2\displaystyle{ \sin^2\alpha = \frac{1 - \cos(2\alpha)}{2} } cos2α=1+cos(2α)2\displaystyle{ \cos^2\alpha = \frac{1 + \cos(2\alpha)}{2} } tan2α=1cos(2α)1+cos(2α)\displaystyle{ \tan^2\alpha= \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)} } cot2α=1+cos(2α)1cos(2α)\displaystyle{ \cot^2\alpha= \frac{1+\cos(2\alpha)}{1-\cos(2\alpha)} } (sinαcosα)2=1sin(2α)\displaystyle{ (\sin\alpha - \cos\alpha)^2= 1-\sin(2\alpha) } (sinα+cosα)2=1+sin(2α)\displaystyle{ (\sin\alpha + \cos\alpha)^2= 1+\sin(2\alpha) }

Formule pentru reducerea gradului

sin3α=3sinαsin(3α)4\displaystyle{ \sin^3\alpha= \frac{3\cdot \sin\alpha-\sin(3\alpha)}{4} } cos3α=3cosα+cos(3α)4\displaystyle{ \cos^3\alpha= \frac{3\cdot \cos\alpha+\cos(3\alpha)}{4} } tan3α=3sinαsin(3α)3cosα+cos(3α)\displaystyle{ \tan^3\alpha= \frac{3\cdot \sin\alpha-\sin(3\alpha)}{3\cdot \cos\alpha+\cos(3\alpha)} } cot3α=3cosα+cos(3α)3sinαsin(3α)\displaystyle{ \cot^3\alpha= \frac{3\cdot \cos\alpha+\cos(3\alpha)}{3\cdot \sin\alpha-\sin(3\alpha)} }

Formule pentru reducerea gradului

sin4α=34cos(2α)+cos(4α)8\displaystyle{ \sin^4\alpha= \frac{3-4\cdot \cos(2\alpha)+\cos(4\alpha)}{8} } cos4α=3+4cos(2α)+cos(4α)8\displaystyle{ \cos^4\alpha= \frac{3+4\cdot \cos(2\alpha)+\cos(4\alpha)}{8} } sin5α=10sinα5sin(3α)+sin(5α)16\displaystyle{ \sin^5\alpha= \frac{10\cdot \sin\alpha - 5\cdot \sin(3\alpha) + \sin(5\alpha) }{16} } cos5α=10cosα+5cos(3α)+cos(5α)16\displaystyle{ \cos^5\alpha= \frac{10\cdot \cos\alpha + 5\cdot \cos(3\alpha) + \cos(5\alpha) }{16} }

Formule cu jumătate
de argument

sin(α2)=±1cosα2\displaystyle{ \sin \left(\frac{\alpha}{2}\right) = \pm \sqrt{ \frac{1-\cos\alpha}{2} } } cos(α2)=±1+cosα2\displaystyle{ \cos \left(\frac{\alpha}{2}\right) = \pm \sqrt{ \frac{1+\cos\alpha}{2} } } tan(α2)=1cosαsinα=sinα1+cosα\displaystyle{ \tan \left(\frac{\alpha}{2}\right)= \frac{1-\cos\alpha}{\sin\alpha}= \frac{\sin\alpha}{1+\cos\alpha} } cot(α2)=1+cosαsinα=sinα1cosα\displaystyle{ \cot \left(\frac{\alpha}{2}\right) = \frac{1+\cos\alpha}{\sin\alpha}= \frac{\sin\alpha}{1-\cos\alpha} }

Formulele de reducere
a gradului de argumentare

sin2(α2)=1cosα2\displaystyle{ \sin^2 \left( \frac{\alpha}{2} \right)= \frac{1-\cos\alpha}{2} } cos2(α2)=1+cosα2\displaystyle{ \cos^2 \left( \frac{\alpha}{2} \right)= \frac{1+\cos\alpha}{2} } tan2(α2)=1cosα1+cosα\displaystyle{ \tan^2 \left( \frac{\alpha}{2} \right)= \frac{1-\cos\alpha}{1+\cos\alpha} } cot2(α2)=1+cosα1cosα\displaystyle{ \cot^2 \left( \frac{\alpha}{2} \right)= \frac{1+\cos\alpha}{1-\cos\alpha} }

Formule de adiție

sin(α+β)=sinαcosβ+cosαsinβ\displaystyle{ \sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta } cos(α+β)=cosαcosβsinαsinβ\displaystyle{ \cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta } tan(α+β)=tanα+tanβ1tanαtanβ\displaystyle{ \tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta} } cot(α+β)=cotαcotβ1cotα+cotβ\displaystyle{ \cot(\alpha + \beta) = \frac{\cot\alpha \cdot \cot\beta -1}{\cot\alpha + \cot\beta} }

Formulele de scădere

sin(αβ)=sinαcosβcosαsinβ\displaystyle{ \sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta } cos(αβ)=cosαcosβ+sinαsinβ\displaystyle{ \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta } tan(αβ)=tanαtanβ1+tanαtanβ\displaystyle{ \tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \cdot \tan\beta} } cot(αβ)=cotαcotβ+1cotαcotβ\displaystyle{ \cot(\alpha - \beta) = \frac{\cot\alpha \cdot \cot\beta +1}{\cot\alpha - \cot\beta} }

Formulele pentru conversia unei
sume în formule de produse

sinα+sinβ=2sin(α+β2)cos(αβ2)\displaystyle{ \sin\alpha + \sin\beta = 2\cdot \sin\left( \frac{\alpha + \beta}{2} \right) \cdot \cos\left( \frac{\alpha - \beta}{2} \right) } cosα+cosβ=2cos(α+β2)cos(αβ2)\displaystyle{ \cos\alpha + \cos\beta = 2\cdot \cos\left( \frac{\alpha + \beta }{2} \right) \cdot \cos\left( \frac{\alpha - \beta }{2} \right) } tanα+tanβ=sin(α+β)cosαcosβ\displaystyle{ \tan\alpha + \tan\beta = \frac{\sin(\alpha + \beta) }{\cos\alpha \cdot \cos\beta} } cotα+cotβ=sin(β+α)sinαsinβ\displaystyle{ \cot\alpha + \cot\beta = \frac{\sin(\beta + \alpha) }{\sin\alpha \cdot \sin\beta} }

Formulele pentru conversia diferenței
în formule de produse

sinαsinβ=2sin(αβ2)cos(α+β2)\displaystyle{ \sin\alpha - \sin\beta = 2\cdot \sin\left( \frac{\alpha - \beta }{2} \right) \cdot \cos\left( \frac{\alpha + \beta }{2} \right) } cosαcosβ=2sin(α+β2)sin(αβ2)\displaystyle{ \cos\alpha - \cos\beta = -2\cdot \sin\left( \frac{\alpha + \beta }{2} \right) \cdot \sin\left( \frac{\alpha - \beta }{2} \right) } tanαtanβ=sin(αβ)cosαcosβ\displaystyle{ \tan\alpha - \tan\beta = \frac{\sin(\alpha - \beta) }{\cos\alpha \cdot \cos\beta} } cotαcotβ=sin(βα)sinαsinβ\displaystyle{ \cot\alpha - \cot\beta = \frac{\sin(\beta - \alpha) }{\sin\alpha \cdot \sin\beta} }

Formulele de conversie a sumelor

sinα+cosα=2sin(α+π4)\displaystyle{ \sin\alpha + \cos\alpha = \sqrt{2}\cdot \sin\left( \alpha+\frac{\pi}{4} \right) } sinαcosα=2sin(απ4)\displaystyle{ \sin\alpha - \cos\alpha = \sqrt{2}\cdot \sin\left( \alpha-\frac{\pi}{4} \right) } arcsin(x)+arccos(x)=π2\displaystyle{ \arcsin(x) + \arccos(x) = \frac{\pi}{2} } arcot(x)+arccot(x)=π2\displaystyle{ ar\cot(x) + arc\cot(x) = \frac{\pi}{2} } Asin(α)+Bcos(α)=A2+B2(sin(α+arccos(AA2+B2)))\displaystyle{ Asin(\alpha) + Bcos(\alpha) = \sqrt{A^2+B^2}(sin(\alpha + arccos\left( \frac{A}{\sqrt{A^2+B^2}} \right))) } Asin(α)Bcos(α)=A2+B2(sin(αarccos(AA2+B2)))\displaystyle{ Asin(\alpha) - Bcos(\alpha) = \sqrt{A^2+B^2}(sin(\alpha - arccos\left( \frac{A}{\sqrt{A^2+B^2}} \right))) }

Formulele pentru transformarea unui produs
în formule sum și diferență

sinαsinβ=cos(αβ)cos(α+β)2\displaystyle{ \sin\alpha \cdot \sin\beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2} } sinαcosβ=sin(αβ)+sin(α+β)2\displaystyle{ \sin\alpha \cdot \cos\beta = \frac{\sin(\alpha - \beta) + \sin(\alpha + \beta)}{2} } cosαcosβ=cos(αβ)+cos(α+β)2\displaystyle{ \cos\alpha \cdot \cos\beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2} } tanαtanβ=cos(αβ)cos(α+β)cos(αβ)+cos(α+β)=tanα+tanβcotα+cotβ\displaystyle{ \tan\alpha \cdot \tan\beta = \frac{cos(\alpha - \beta) - \cos(\alpha + \beta)}{\cos(\alpha - \beta) + \cos(\alpha + \beta)} = \frac{\tan\alpha + \tan\beta}{\cot\alpha + \cot\beta} } cotαcotβ=cos(αβ)+cos(α+β)cos(αβ)cos(α+β)=cotα+cotβtanα+tanβ\displaystyle{ \cot\alpha \cdot \cot\beta = \frac{\cos(\alpha - \beta)+\cos(\alpha + \beta)}{\cos(\alpha - \beta)-\cos(\alpha + \beta)} = \frac{\cot\alpha + \cot\beta}{\tan\alpha + \tan\beta} } tanαcotβ=sin(αβ)+sin(α+β)sin(α+β)sin(αβ)\displaystyle{ \tan\alpha \cdot \cot\beta = \frac{\sin(\alpha - \beta)+\sin(\alpha + \beta)}{\sin(\alpha + \beta)-\sin(\alpha - \beta)} }

Formule pentru transformarea unui produs
de funcții într-o putere

sin2(α)cos2(α)=1cos(4α)8\displaystyle{ \sin^2(\alpha)\cdot \cos^2(\alpha) = \frac{ 1 - \cos(4\alpha) }{8} } sin3(α)cos3(α)=3sin(2α)sin(6α)32\displaystyle{ \sin^3(\alpha)\cdot \cos^3(\alpha) = \frac{ 3\cdot \sin(2\alpha) - \sin(6\alpha) }{32} } sin4(α)cos4(α)=34cos(4α)+cos(8α)128\displaystyle{ \sin^4(\alpha)\cdot \cos^4(\alpha) = \frac{ 3 - 4\cdot \cos(4\alpha) + \cos(8\alpha) }{128} } sin5(α)cos5(α)=10sin(2α)5sin(6α)+sin(10α)512\displaystyle{ \sin^5(\alpha)\cdot \cos^5(\alpha) = \frac{ 10\cdot \sin(2\alpha) - 5\cdot \sin(6\alpha) + \sin(10\alpha) }{512} }

Formule pentru reducerea gradului

sinn(α)=Cn2n2n+12n1k=0n21(1)n2kCkncos((n2k)α)\displaystyle{ sin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha) } cosn(α)=Cn2n2n+12n1k=0n21Ckncos((n2k)α)\displaystyle{ cos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha) } sinn(α)=12n1k=0n12(1)n12kCknsin((n2k)α)\displaystyle{ sin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha) } cosn(α)=12n1k=0n12Ckncos((n2k)α)\displaystyle{ cos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha) }

Înlocuirea
trigonometrică universală

sinα=2tan(α2)1+tan2(α2)\displaystyle{ \sin\alpha = \frac{2\cdot \tan\left( \frac{\alpha}{2} \right)}{1 + \tan^2 \left( \frac{\alpha}{2} \right)} } cosα=1tan2(α2)1+tan2(α2)\displaystyle{ \cos\alpha = \frac{ 1 - \tan^2 \left( \frac{\alpha}{2} \right) }{1 + \tan^2 \left( \frac{\alpha}{2} \right)} } tanα=2tan(α2)1tan2(α2)\displaystyle{ \tan\alpha = \frac{2\cdot \tan\left( \frac{\alpha}{2} \right)}{1 - \tan^2 \left( \frac{\alpha}{2} \right)} } cotα=1tan2(α2)2tan(α2)\displaystyle{ \cot\alpha = \frac{1 - \tan^2 \left( \frac{\alpha}{2} \right)}{2\cdot \tan\left( \frac{\alpha}{2} \right)} }


Valorile funcțiilor trigonometrice

α 0 π6\displaystyle{ \frac{\pi}{6} } π4\displaystyle{ \frac{\pi}{4} } π3\displaystyle{ \frac{\pi}{3} } π2\displaystyle{ \frac{\pi}{2} } 2π3\displaystyle{ \frac{2\pi}{3} } 3π4\displaystyle{ \frac{3\pi}{4} } 5π6\displaystyle{ \frac{5\pi}{6} } π\displaystyle{ \pi } 7π6\displaystyle{ \frac{7\pi}{6} } 5π4\displaystyle{ \frac{5\pi}{4} } 4π3\displaystyle{ \frac{4\pi}{3} } 3π2\displaystyle{ \frac{3\pi}{2} } 5π3\displaystyle{ \frac{5\pi}{3} } 7π4\displaystyle{ \frac{7\pi}{4} } 11π6\displaystyle{ \frac{11\pi}{6} } 2π\displaystyle{ 2\pi }
α° 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
sin α 0 12\displaystyle{ \frac{1}{2} } 22\displaystyle{ \frac{\sqrt{2}}{2} } 32\displaystyle{ \frac{\sqrt{3}}{2} } 1 32\displaystyle{ \frac{\sqrt{3}}{2} } 22\displaystyle{ \frac{\sqrt{2}}{2} } 12\displaystyle{ \frac{1}{2} } 0 12\displaystyle{ -\frac{1}{2} } 22\displaystyle{ -\frac{\sqrt{2}}{2} } 32\displaystyle{ -\frac{\sqrt{3}}{2} } −1 32\displaystyle{ -\frac{\sqrt{3}}{2} } 22\displaystyle{ -\frac{\sqrt{2}}{2} } 12\displaystyle{ -\frac{1}{2} } 0
cos α 1 32\displaystyle{ \frac{\sqrt{3}}{2} } 22\displaystyle{ \frac{\sqrt{2}}{2} } 12\displaystyle{ \frac{1}{2} } 0 12\displaystyle{ -\frac{1}{2} } 22\displaystyle{ -\frac{\sqrt{2}}{2} } 32\displaystyle{ -\frac{\sqrt{3}}{2} } −1 32\displaystyle{ -\frac{\sqrt{3}}{2} } 22\displaystyle{ -\frac{\sqrt{2}}{2} } 12\displaystyle{ -\frac{1}{2} } 0 12\displaystyle{ \frac{1}{2} } 22\displaystyle{ \frac{\sqrt{2}}{2} } 32\displaystyle{ \frac{\sqrt{3}}{2} } 1
tg α 0 13\displaystyle{ \frac{1}{\sqrt{3}} } 1 3\displaystyle{ \sqrt{3} } 3\displaystyle{ - \sqrt{3} } −1 13\displaystyle{ -\frac{1}{\sqrt{3}} } 0 13\displaystyle{ \frac{1}{\sqrt{3}} } 1 3\displaystyle{ \sqrt{3} } 3\displaystyle{ - \sqrt{3} } −1 13\displaystyle{ - \frac{1}{\sqrt{3}} } 0
ctg α 3\displaystyle{ \sqrt{3} } 1 13\displaystyle{ \frac{1}{\sqrt{3}} } 0 13\displaystyle{ - \frac{1}{\sqrt{3}} } −1 3\displaystyle{ - \sqrt{3} } 3\displaystyle{ \sqrt{3} } 1 13\displaystyle{ \frac{1}{\sqrt{3}} } 0 13\displaystyle{ - \frac{1}{\sqrt{3}} } −1 3\displaystyle{ - \sqrt{3} }


Descărcați formulele trigonometrice

Puteți descărca formulele trigonometrice sub forma unei imagini: