Навигация по статье:
- Альфа излучение
- Нейтронное излучение
- Бета излучение
- Гамма излучение
- Рентгеновское излучение
- Сравнительная таблица видов радиации
- Видео о радиации и ее видах
Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.
Что такое радиация
Для начала дадим определение, что такое радиация:
В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.
Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.
Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.
Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.
Виды радиации
Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.
Гамма и рентгеновское излучение - это излучение энергии.
Альфа излучение
- излучаются: два протона и два нейтрона
- проникающая способность: низкая
- облучение от источника: до 10 см
- скорость излучения: 20 000 км/с
- ионизация: 30 000 пар ионов на 1 см пробега
- биологическое действие радиации: высокое
Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.
Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.
Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.
Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.
Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.
Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.
Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.
Нейтронное излучение
- излучаются: нейтроны
- проникающая способность: высокая
- облучение от источника: километры
- скорость излучения: 40 000 км/с
- ионизация: от 3000 до 5000 пар ионов на 1 см пробега
- биологическое действие радиации: высокое
Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.
Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.
Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.
Бета излучение
- излучаются: электроны или позитроны
- проникающая способность: средняя
- облучение от источника: до 20 м
- скорость излучения: 300 000 км/с
- ионизация: от 40 до 150 пар ионов на 1 см пробега
- биологическое действие радиации: среднее
Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.
При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.
Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.
Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.
Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.
Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.
Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.
Гамма излучение
- излучаются: энергия в виде фотонов
- проникающая способность: высокая
- облучение от источника: до сотен метров
- скорость излучения: 300 000 км/с
- ионизация: от 3 до 5 пар ионов на 1 см пробега
- биологическое действие радиации: низкое
Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.
Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.
Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения
Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.
Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.
Рентгеновское излучение
- излучаются: энергия в виде фотонов
- проникающая способность:высокая
- облучение от источника: до сотен метров
- скорость излучения: 300 000 км/с
- ионизация: от 3 до 5 пар ионов на 1 см пробега
- биологическое действие радиации: низкое
Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.
Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.
Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.
Каждое из рассмотренных излучений опасно!
Сравнительная таблица с характеристиками различных видов радиации
характеристика | Вид радиации | ||||
Альфа излучение | Нейтронное излучение | Бета излучение | Гамма излучение | Рентгеновское излучение | |
излучаются | два протона и два нейтрона | нейтроны | электроны или позитроны | энергия в виде фотонов | энергия в виде фотонов |
проникающая способность | низкая | высокая | средняя | высокая | высокая |
облучение от источника | до 10 см | километры | до 20 м | сотни метров | сотни метров |
скорость излучения | 20 000 км/с | 40 000 км/с | 300 000 км/с | 300 000 км/с | 300 000 км/с |
ионизация, пар на 1 см пробега | 30 000 | от 3000 до 5000 | от 40 до 150 | от 3 до 5 | от 3 до 5 |
биологическое действие радиации | высокое | высокое | среднее | низкое | низкое |
Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.
Коэффициент k | |
Вид излучения и диапазон энергий | Весовой множитель |
Фотоны всех энергий (гамма излучение) | 1 |
Электроны и мюоны всех энергий (бета излучение) | 1 |
Нейтроны с энергией < 10 КэВ (нейтронное излучение) | 5 |
Нейтроны от 10 до 100 КэВ (нейтронное излучение) | 10 |
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) | 20 |
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) | 10 |
Нейтроны > 20 МэВ (нейтронное излучение) | 5 |
Протоны с энергий > 2 МэВ (кроме протонов отдачи) | 5 |
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) | 20 |
Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.